Modern Control systems

Lecture-6 Controllability

V. Sankaranarayanan

V. Sankaranarayanan Modern Control systems

< 注→ < 注→

Outline

V. Sankaranarayanan Modern Control systems

.

Controllability

DEFINITION

A linear system, described above by state space equations (1) and is said to be controllable, if for any initial state $x(0) = x_0$ and any final state $x(T) = x_f$, there exists an unconstrained control input $u(t), 0 \le t \le T$ that transfers the system from x_0 to x_f in a finite time 'T'. Otherwise the system is said to be uncontrollable.

・ロン ・四 と ・ ヨン ・ ヨン …

Controllability

DEFINITION

- A state x_0 is said to be Controllable, if there exists a finite time interval [0, T]and an input $u(t), t \in [0, T]$ such that x(T) = 0
- If all sates are controllable, then the system is said to be Completely Controllable

CONTROLLABILITY - RANK CONDITION

The system of the form (1) is said to be controllable if and only if the rank of $C = (B \ AB \ A^2B \ . \ . \ A^{n-1}B) = n$

Proof

•
$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

• Since the controllability depends only on input state variables. $\begin{aligned} x(t) &= \int_0^t e^{\mathbf{A}(t-\tau)} \mathbf{B} u(\tau) d\tau \\ x(t) &= \int_0^t e^{\mathbf{A}t} \mathbf{B} u(t-\tau) d\tau \end{aligned}$ • $e^{\mathbf{A}t} = I + \mathbf{A}t + \frac{(\mathbf{A}t)^2}{2!} + \frac{(\mathbf{A}t)^3}{2!} + \dots$

< 注→ < 注→

< 17 ▶

Controllability - Rank condition

•
$$x(t) = \sum_{i=0}^{n-1} A^i B \beta_i(t)$$

where $\beta_i(t) = \int_0^t \alpha_i(t) u(t-\tau) d\tau$
• $x(t) = \begin{pmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{pmatrix} \begin{pmatrix} \beta_0(t) \\ \beta_1(t) \\ \beta_2(t) \\ \vdots \\ \beta_{n-1}(t) \end{pmatrix}$
• $x(t) = \phi \beta(t)$
 $\beta(t) = \phi^{-1} x(t)$
 ϕ is non-singular and invertible

▲ロト ▲園ト ▲ヨト ▲ヨト 三目 - のへで

BASIC PRE-REQUISITES

- Before we prove the condition for controllability let us see some basic prerequisites.
- Consider, the matrix

$$e^{\mathbf{A}t} = \mathbf{Q} \begin{bmatrix} e^{\lambda_1 t} & te^{\lambda_1 t} & t^2 e^{\lambda_1 t} & 0 & 0\\ 0 & e^{\lambda_1 t} & te^{\lambda_1 t} & 0 & 0\\ 0 & 0 & e^{\lambda_1 t} & 0 & 0\\ 0 & 0 & 0 & e^{\lambda_1 t} & 0\\ 0 & 0 & 0 & 0 & e^{\lambda_2 t} \end{bmatrix} \mathbf{Q}^{-1}$$

- We can see that every entry of $e^{\mathbf{A}t}$ is a linear combination of terms $[e^{\lambda_1 t}, te^{\lambda_1 t}, t^2 e^{\lambda_1 t}, e^{\lambda_2 t}].$
- These values depend upon eigenvalues and their indices. Here, $\bar{n}_1 1 = 2$, where \bar{n}_1 is the index of the eigenvalue λ_1
- In general, if A has an eigenvalue with index \bar{n}_1 , then every entry of e^{At} is a linear combination of terms $e^{\lambda_1 t}$, $te^{\lambda_1 t}$, $t^2 e^{\lambda_1 t}$, \cdots , $t^{\bar{n}_1 1} e^{\lambda_1 t}$
- Every such term can be infinitely differentiable and can be expanded in a Taylor series at every 't' and is called Analytic.

・ロト ・ 同ト ・ ヨト ・ ヨト

BASIC PRE-REQUISITES CONTINUED...

- <u>Gram Matrix</u>: Let A be the matrix whose columns are the vectors v_1, v_2, \cdots, v_n . Then the Gram matrix is $A^T A$, so $|G| = |A|^2$.
- It is the Hermitian matrix of the inner products whose entries are given by $G_{ij}=\langle v_i,v_j \rangle$
- In system theory, Controllability Gramian is used to determine whether or not a linear system is controllable.

PROOF THAT CONTROLLABILITY MATRIX HAS FULL ROW RANK

- Now, let us prove that the controllability matrix has a full row rank.
- We can show that the controllability matrix C has a full row rank if $W_c(t)$ is non singular, where, $W_c(t) = \int_0^t e^{A\tau} B B^T e^{A^T \tau} d\tau$ is the controllability gramian matrix.

・ 同 ト ・ ヨ ト ・ ヨ ト

Controllability

- Consider the equation $\boldsymbol{x}(t_1) = e^{\boldsymbol{A}t}\boldsymbol{x}(0) + \int_0^t e^{\boldsymbol{A}(t-\tau)}\boldsymbol{B}u(\tau)d\tau$
- Let us claim that for any $\boldsymbol{x}(0) = x_0$ and any state $x(t_1) = x_1$, the input $u(t) = -\boldsymbol{B}^T e^{\boldsymbol{A}^T(t_1-t)} \boldsymbol{W}_c^{-1}(t_1) [e^{\boldsymbol{A}t} x_0 x_1]$ will transfer the state x_0 to x_1 in the interval t_1
- Substituting u(t) in the above equation we get ,

$$\begin{aligned} x(t_1) &= e^{\mathbf{A}t} \mathbf{x}(0) - \int_0^t e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{B}^T e^{\mathbf{A}^T(t_1-t)} \mathbf{W}_c^{-1}(t_1) [e^{\mathbf{A}t} x_0 - x_1] d\tau \\ x(1) &= e^{\mathbf{A}t} \mathbf{x}(0) - \mathbf{W}_c \mathbf{W}_c^{-1}(t_1) [e^{\mathbf{A}t} x_0 - x_1] \end{aligned}$$

• This shows that (A, B) is controllable if and only if W_c is invertible.

伺い イヨン イヨン

Controllability

• Suppose, (A, B) is controllable and W_c is a singular matrix, then there exists a non-zero $n \times 1$ vector q such that $q^T W_c q = 0$

$$\boldsymbol{q}^{T}\boldsymbol{W}_{c} = \int_{0}^{t} \boldsymbol{q}^{T}e^{\boldsymbol{A}\boldsymbol{\tau}}\boldsymbol{B}\boldsymbol{B}^{T}e^{\boldsymbol{A}^{T}\boldsymbol{\tau}}\boldsymbol{q}d\boldsymbol{\tau}$$
$$= \int_{0}^{t} \left\|\boldsymbol{B}^{T}e^{\boldsymbol{A}^{T}\boldsymbol{\tau}}\boldsymbol{q}\right\|^{2}d\boldsymbol{\tau} = 0$$
$$\Rightarrow \boldsymbol{B}^{T}e^{\boldsymbol{A}^{T}\boldsymbol{\tau}}\boldsymbol{q} = \boldsymbol{q}^{T}e^{\boldsymbol{A}\boldsymbol{\tau}}\boldsymbol{B} = 0$$

- Let, $\mathcal{C} = e^{\mathbf{A}\tau} \mathbf{B}$
- We know that $e^{A\tau}B$ are analytic, i.e, every such term can be infinitely differentiable and can be expanded in a taylor series at every 't'.
- Therefore, \boldsymbol{W}_c is non singular if and only if there exists no $n \times 1$ non zero vector \boldsymbol{q} such that $\boldsymbol{q}^T \boldsymbol{\mathcal{C}} = 0$
- Therefore, \mathcal{C} has full row rank, i.e., rank of $\mathcal{C} = n$

A B M A B M

Example-1 to check controllability

Consider the state and output equations,

$$\dot{x}_1 = -2x_2 + u$$

 $\dot{x}_2 = x_1 - 3x_2 + u$
 $y = x_1$

- Let us try to check for controllability of this system by transforming these equations into different forms.
- Representing these equations in matrix form , we get

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Example-1 to check controllability

• We know that the controllability matrix for a system having two state variables is given by

$$\mathcal{C} = [\mathbf{B} \quad \mathbf{AB}]_{2 \times 2}$$

$$\mathcal{C} = \begin{bmatrix} 1 & -2\\ 1 & -2 \end{bmatrix}$$

- Rank of matrix $\mathcal{C} = 1$ is less than 2. Therefore, \mathcal{C} is not a full row matrix.
- Therefore, the system is not Controllable.

EXAMPLE-1 TO CHECK CONTROLLABILITY

- Now, let us check the controllability of the system by transforming it into diagonal canonical form.
- The transformation matrix P is the modal matrix formed by the eigenvectors corresponding to the eigenvalues of matrix A.

• Matrix
$$\boldsymbol{P} = \begin{bmatrix} 1 & 1 \\ 1 & \frac{1}{2} \end{bmatrix}$$

• Transformed matrices A_z and B_z are obtained using relations $A_z = P^{-1}AP, B_z = P^{-1}B$

$$\boldsymbol{A}_{\boldsymbol{z}} = \begin{bmatrix} -2 & 0\\ 0 & -1 \end{bmatrix} \boldsymbol{B}_{\boldsymbol{z}} = \begin{bmatrix} 1\\ 0 \end{bmatrix}$$

A B > A B >

Example-1 to check controllability

• Representing them in matrix form , we get

$$\begin{bmatrix} \dot{z}_1\\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} -2 & 0\\ 0 & -1 \end{bmatrix} \begin{bmatrix} z_1\\ z_2 \end{bmatrix} + \begin{bmatrix} 1\\ 0 \end{bmatrix} u$$

- Controllability matrix, $\boldsymbol{\mathcal{C}} = \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$
- Rank of the matrix $\mathcal{C} = 1$, has a row full of zeroes, is less than 2 .
- Therefore, the system is not Controllable.

・ 戸 ・ ・ ヨ ・ ・ 日 ・

Example-1 to check controllability

- Now, let us check the controllability of the system by transforming it into Canonical Form-I using Similarity Transformation.
- $\bullet\,$ The transformation matrix ${\cal P}$ is obtained by Conventional method, explained in Lecture-5.
- Matrix $\boldsymbol{P} = \begin{bmatrix} 1 & -1 \\ -1 & -2 \end{bmatrix}$
- Transformed matrices A_z and B_z are obtained using relations $A_z = P^{-1}AP, B_z = P^{-1}B$

$$\boldsymbol{A_z} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \boldsymbol{B_z} = \begin{bmatrix} 1/3 \\ -2/3 \end{bmatrix}$$

Example-1 to check controllability

• Representing them in matrix form , we get

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} 1/3 \\ -2/3 \end{bmatrix} u$$

- Controllability matrix, $\boldsymbol{\mathcal{C}} = \begin{bmatrix} 1/3 & -2/3 \\ -2/3 & 4/3 \end{bmatrix}$
- Rank of the matrix $\mathcal{C} = 1$, is less than 2.
- Therefore, the system is not Controllable.

・ 戸 ・ ・ ヨ ・ ・ 日 ・

Example-2 to check controllability

Consider the state and output equations,

$$\dot{x}_1 = 3x_2$$

 $\dot{x}_2 = -2x_1 + 5x_2 + u$
 $y = x_1$

- Let us try to check for controllability of this system by transforming these equations into different forms.
- Representing these equations in matrix form , we get

$$\begin{bmatrix} \dot{x}_1\\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 3\\ -2 & 5 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} 0\\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix}$$

Example-2 to check controllability

• We know that the controllability matrix for a system having two state variables is given by

$$\boldsymbol{\mathcal{C}} = [\boldsymbol{B} \quad \boldsymbol{A}\boldsymbol{B}]_{2\times 2}$$

$$\boldsymbol{\mathcal{C}} = \begin{bmatrix} 0 & 3\\ 1 & 5 \end{bmatrix}$$

- Rank of matrix $\mathcal{C} = 1$ is 2. Therefore, \mathcal{C} is a full row matrix.
- Therefore, the system is Controllable.

・ 「 ト ・ ヨ ト ・ ヨ ト

Example-2 to check controllability

- Now, let us check the controllability of the system by transforming it into diagonal canonical form.
- The transformation matrix P is the modal matrix formed by the eigenvectors corresponding to the eigenvalues of matrix A.
- Matrix $\boldsymbol{P} = \begin{bmatrix} 1 & 1 \\ 2/3 & 1 \end{bmatrix}$
- Transformed matrices A_z and B_z are obtained using relations $A_z = P^{-1}AP, B_z = P^{-1}B$

$$\boldsymbol{A_z} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \boldsymbol{B_z} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$$

A B M A B M

Example-2 to check controllability

• Representing them in matrix form , we get

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} 3 \\ -3 \end{bmatrix} u$$

• Controllability matrix,
$$\boldsymbol{\mathcal{C}} = \begin{bmatrix} 3 & 6 \\ -3 & -9 \end{bmatrix}$$

- Rank of the matrix C = 2.
- Therefore, the system is Controllable.

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

Example-2 to check controllability

- Now, let us check the controllability of the system by transforming it into Canonical Form-I using Similarity Transformation.
- $\bullet\,$ The transformation matrix ${\cal P}$ is obtained by Conventional method, explained in Lecture-5.
- Matrix $\boldsymbol{P} = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$
- Transformed matrices A_z and B_z are obtained using relations $A_z = P^{-1}AP, B_z = P^{-1}B$

$$\boldsymbol{A_z} = \begin{bmatrix} 0 & 1 \\ -6 & 5 \end{bmatrix} \boldsymbol{B_z} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Example-2 to check controllability

• Representing them in matrix form , we get

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -6 & 5 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

• Controllability matrix,
$$\boldsymbol{\mathcal{C}} = \begin{bmatrix} 0 & 1 \\ 1 & 5 \end{bmatrix}$$

- Rank of the matrix $\mathcal{C} = 2$.
- Therefore, the system is Controllable.

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・